skip to main content


Search for: All records

Creators/Authors contains: "Hernández-Cuenca, Sergio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We find a new on-shell replica wormhole in a computation of the generating functional of JT gravity coupled to matter. We show that this saddle has lower action than the disconnected one, and that it is stable under restriction to real Lorentzian sections, but can be unstable otherwise. The behavior of the classical generating functional thus may be strongly dependent on the signature of allowed perturbations. As part of our analysis, we give an LM-style construction for computing the on-shell action of replicated manifolds even as the number of boundaries approaches zero, including a type of one-step replica symmetry breaking that is necessary to capture the contribution of the new saddle. Our results are robust against quantum corrections; in fact, we find evidence that such corrections may sometimes stabilize this new saddle. 
    more » « less
  2. A bstract The holographic entropy cone characterizes the relations between entanglement entropies for a spatial partitioning of the boundary spacetime of a holographic CFT in any state describing a classical bulk geometry. We argue that the holographic entropy cone, for an arbitrary number of parties, can be reconstructed from more fundamental data determined solely by subadditivity of quantum entropy. We formulate certain conjectures about graph models of holographic entanglement, for which we provide strong evidence, and rigorously prove that they all imply that such a reconstruction is possible. Our conjectures (except only for the weakest) further imply that the necessary data is remarkably simple. In essence, all one needs to know to reconstruct the holographic entropy cone, is a certain subset of the extreme rays of this simpler “subadditivity cone”, namely those which can be realized in holography. This recasting of the bewildering entanglement structure of geometric states into primal building blocks paves the way to distilling the essence of holography for the emergence of a classical bulk spacetime. 
    more » « less
  3. We introduce a novel model of multipartite entanglement based on topological links, generalizing the graph/hypergraph entropy cone program. We demonstrate that there exist link representations of entropy vectors which provably cannot be represented by graphs or hypergraphs. Furthermore, we show that the contraction map proof method generalizes to the topological setting, though now requiring oracular solutions to well-known but difficult problems in knot theory. 
    more » « less
  4. A bstract Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy Cone (HEC). These inequalities are no longer satisfied once general quantum corrections are included by employing the Quantum Extremal Surface (QES) prescription. Nevertheless, the structure of the QES formula allows for a controlled study of how quantum contributions from bulk entropies interplay with HEC inequalities. In this paper, we initiate an exploration of this problem by relating bulk entropy constraints to boundary entropy inequalities. In particular, we show that requiring the bulk entropies to satisfy the HEC implies that the boundary entropies also satisfy the HEC. Further, we also show that requiring the bulk entropies to obey monogamy of mutual information (MMI) implies the boundary entropies also obey MMI. 
    more » « less
  5. null (Ed.)
    A bstract Holographic duality implies that the geometric properties of the gravitational bulk theory should be encoded in the dual field theory. These naturally include the metric on dimensions that become compact near the conformal boundary, as is the case for any asymptotically locally AdS n × $$ \mathbbm{S} $$ S k spacetime. Almost all previous work on metric reconstruction ignores these dimensions and would thus at most apply to dimensionally-reduced metrics. In this work, we generalize the approach to bulk reconstruction using light-cone cuts and propose a prescription to obtain the full higher-dimensional metric of generic spacetimes up to an overall conformal factor. We first extend the definition of light-cone cuts to include information about the asymptotic compact dimensions, and show that the full conformal metric can be recovered from these extended cuts. We then give a prescription for obtaining these extended cuts from the dual field theory. The location of the usual cuts can still be obtained from bulk-point singularities of correlators, and the new information in the extended cut can be extracted by using appropriate combinations of operators dual to Kaluza-Klein modes of the higher-dimensional bulk fields. 
    more » « less
  6. null (Ed.)
    In this work, we generalize the graph-theoretic techniques used for the holographic entropy cone to study hypergraphs and their analogously-defined entropy cone.This allows us to develop a framework to efficiently compute entropies and prove inequalities satisfied by hypergraphs.In doing so, we discover a class of quantum entropy vectors which reach beyond those of holographic states and obey constraints intimately related to the ones obeyed by stabilizer states and linear ranks.We show that, at least up to 4 parties, the hypergraph cone is identical to the stabilizer entropy cone, thus demonstrating that the hypergraph framework is broadly applicable to the study of entanglement entropy.We conjecture that this equality continues to hold for higher party numbers and report on partial progress on this direction.To physically motivate this conjectured equivalence, we also propose a plausible method inspired by tensor networks to construct a quantum state from a given hypergraph such that their entropy vectors match. 
    more » « less